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We have investigated the transient characteristics of two types of chaos synchronization in a semiconductor
laser subject to optical feedback: complete synchronization and strong injection locking-type synchronization.
We have calculated the statistical distribution of the transient response time of synchronization when the initial
position in the starting attractor is varied. For complete synchronization, the distribution of the transient
response time has much larger average and variance than the average period of the chaotic oscillations.
Conversely, a short transient response time is obtained for strong injection locking-type synchronization. We
found that the transient response time is dependent upon the maximum Lyapunov exponent of the chaotic
temporal waveform for complete synchronization, whereas it is almost constant for strong injection locking-
type synchronization.
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I. INTRODUCTION

Synchronization of chaos has attracted increasing interest
for applications of secure communications[1,2]. One of the
communication methods using chaos is called chaos shift
keying, in which two chaotic attractors are treated as two
binary codes for the transmission of digital information[3].
Chaotic on-off keying is a simple version of the chaos shift
keying, in which two different values of the accuracy of
synchronization are used to distinguish two binary codes[4].
In these communication schemes, the transient response time
of chaos synchronization has to be shortened for higher
transmission rates. However, the transient characteristics of
chaos synchronization have not been investigated so far.

The transient characteristics from chaos to controlled pe-
riodic states have been investigated in the Henon map and
CO2 lasers[5–7]. The switching between two controlled pe-
riodic attractors has also been investigated in a semiconduc-
tor laser[8]. In these studies, the transient response time is
dependent upon the initial attractor, and its probability distri-
bution is of an exponential nature, which is called “chaotic
transient”[5]. Switching characteristics between different at-
tractors are also important in understanding the dynamics of
low frequency fluctuations(LFF) in semiconductor lasers
that are subject to optical feedback[9]. LFF is an abrupt
power-dropout event in laser output over a long time scale
when compared with the relaxation oscillation period. Such a
phenomenon has been attributed to chaotic itinerancy or
spontaneous switching behavior between unstable attractors.
These switching characteristics are similar to the transient
dynamics between periodic attractors stabilized from chaotic
attractors[8]. However, the studies on transient characteris-
tics of chaos synchronization have not been reported in laser
systems.

In this study, we investigate the transient characteristics of
chaos synchronization in a semiconductor laser subject to
optical feedback. There are two types of chaos synchroniza-
tion in a semiconductor laser with optical feedback, which
are called complete synchronization and strong injection

locking-type synchronization[10–16]. The main difference
of the two types is a time delay between the two chaotic
wave forms. Complete synchronization of electrical ampli-
tudes between the master laserEm and the slave laserEs can
be denoted asEsstd=Emst−tinj +tmd, where the delay be-
tween the two lasers is dependent on both a delay of external
feedback light in the master lasertm and a delay of injection
signal from the master to the slave laserstinj. Since the com-
plete synchronization corresponds to a mathematical solution
of synchronization in Lang-Kobayashi equations, all the pa-
rameters must be set to be identical. This synchronization has
been also known as anticipating chaos[17–19], whentm is
greater thantinj. On the other hand, there is another type of
synchronization, which is called strong injection locking-
type synchronization(also called conventional synchroniza-
tion [13], time lag synchronization[15], and synchronization
by amplification[16]). In this case, the delay between the
two lasers is only dependent ontinj and the amplitudes of the
two chaotic wave forms are different, i.e.,Esstd=A3Emst
−tinjd. Strong injection locking effect induces this type of
synchronization. In this paper, we calculate the transient time
for both of the two types of synchronization and clarify dif-
ferences between them. We also investigate the relationship
between the transient response time and the maximum
Lyapunov exponent of injected chaotic wave forms.

II. MODEL

Figure 1 shows our numerical model. A compound cavity
of a single-longitudinal-mode semiconductor laser is used as
a master laser, where the laser is subject to external feedback
light from an external mirror. The laser light is reflected by
the external mirror located at a distanceL from the front
facet of the cavity of the semiconductor laser. The output of
the master laser is injected into the cavity of a slave laser
without external feedback for chaos synchronization. We
change the strength of the injection beam to demonstrate the
two types of chaos synchronization. The amplitude of feed-
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back light is varied by changing the reflectivity of the exter-
nal mirror r3.

The Lang-Kobayashi equations have been used for two
decades to describe the dynamics of a single-longitudinal-
mode semiconductor laser with weak optical feedback
[20,21]. However, a limit of validity of the Lang-Kobayashi
equations for a Fabry-Perot laser has been pointed out that
the description of the laser with optical feedback requires a
multilongitudinal model even in the presence of tiny amount
of optical feedback[22,23]. In our calculation, we assume a
distributed-feedback(DFB) semiconductor laser to avoid
multi-longitudinal-mode oscillations all the time. Under this
condition, the Lang-Kobayashi equations are reasonable to
describe the dynamics of a semiconductor laser subject to
optical feedback[12,24]. The Lang-Kobayashi equations are
described as follows:

Master laser:

dEmstd
dt

=
1

2
HGNfNmstd − N0g −

1

tp
JEmstd

+
km

tin
Emst − tmdcosfDmstdg, s2.1d

dFmstd
dt

=
a

2
GNfNmstd − Nthg −

kmEmst − tmd
tinEmstd

sinfDmstdg,

s2.2d

dNmstd
dt

= J −
Nmstd

ts
− GNfNmstd − N0guEmstdu2, s2.3d

Dmstd = vmtm + Fmstd − Fmst − tmd. s2.4d

Slave laser:

dEsstd
dt

=
1

2
HGNfNsstd − N0g −

1

tp
JEsstd

+
kinj

tin
Emst − tinjdcosfDsstdg, s2.5d

dFsstd
dt

=
a

2
GNfNsstd − Nthg −

kinjEmst − tinjd
tinEsstd

sinfDsstdg,

s2.6d

dNsstd
dt

= J −
Nsstd

ts
− GNfNsstd − N0guEsstdu2, s2.7d

Dsstd = − Dvt + vmtinj + Fsstd − Fmst − tinjd, s2.8d

where Estd and Fstd are the electrical amplitude and the
phase,Nstd is the carrier density, andDstd is the phase dif-
ference. The subscriptsm,s indicate the master and slave
lasers.GN is the gain coefficient,N0 is the carrier density at
the transparency,Nth=N0+1/sGNtpd is the threshold of car-
rier density for the solitary laser,km=s1−r2

2dr3/ r2 is the
feedback coefficient of the master laser,r2 is the facet
reflectivity of electrical amplitude,r3 is the reflectivity of
the external mirror of electrical amplitude, andkinj is the
injection coefficient.tp is the photon lifetime,tin=2nl /c is
the optical round-trip time in the cavity of the semicon-
ductor laser,l is the cavity length,n is the refractive in-
dex, ts is the carrier lifetime,tm=2nL/c is the round trip
time of the external cavity in the master laser,tinj is the
transmission time of injection signal from the master to
the slave laser,a is the linewidth enhancement factor,J is
the injection current density, andJth=Nth/ts is the thresh-
old of the injection current density.vm=2pc/lm is the
angular frequency of the master laser,lm is the wave-
length of the master laser,Dv=vm−vs is the detuning of
the angular frequencies between the master and slave la-
sers. The coupling from the master to the slave laser is
introduced via the term ofEmst−tinjd in Eqs. s2.5d and
s2.6d. We ignore the small contribution from nonlinear
gain suppression and spontaneous emission. Since the
amount of feedback light relative to the output power of
lasers is very smalls10−4–10–5d, secondary optical feed-
back is negligible. In our calculation, the Langevin noise
terms are ignored for the sake of simplicity. All the pa-
rameters are set to be identical between the master and
slave lasers exceptkm and kinj, as shown in Table I. We
numerically integrate Eqs.s2.1d–s2.8d by employing the
Runge-Kutta-Gill method.

III. NUMERICAL CALCULATION

A. Complete synchronization

We focus on the transient response time for complete syn-
chronization in this section. All the parameters are set to be
identical between the master and slave lasers. In particular,
the condition for complete synchronization is satisfied as
km=kinj andtm=tinj [10].

We investigate the transient response time when the out-
put of the master laser is injected into the slave laser in a
step-function. The transient response time is defined as the
time from the beginning of the step function to the moment
at which the intensity level of the slave laser reaches a region
within 10 % of the asymptotic values of the master laser, as
shown in Fig. 2. We calculate the difference of two temporal
wave forms at each point for whole time series, and the

FIG. 1. Numerical model of chaos synchronization in two semi-
conductor lasers. BS: beam splitter, IS: optical isolator,M: mirror,
SL: semiconductor laser, VA: variable attenuator,km: feedback co-
efficient of the master laser,kinj: injection coefficient from the mas-
ter to the slave laser.
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transient response time is defined as the latest time at which
the difference converges and remains within 10% for the rest
of the time series.

According to our calculations, the transient response time
for chaos synchronization is greatly influenced by its initial
position in the starting attractor before switching occurs.
These results coincide well with the transition characteristics
between stabilized periodic attractors in Ref.[8]. Therefore,
we calculate the statistical distribution of the transient re-
sponse time when the initial position in the starting attractor
is varied for 5000 points. We select the initial conditions
uniformly on the chaotic attractors, and the way of selecting
initial conditions does not affect the distribution of transient
response time when a large number of initial positions more
than 5000 points are used.

Figure 3 shows the statistical distributions of the transient
response time for chaos synchronization[Figs. 3(a), 3(b) and

3(c)] and examples of temporal wave forms of the two lasers
including the transient process[Figs. 3(d), 3(e) and 3(f)] at
various r3. As r3 is increased, the distributions have large
average transient response times and large variances. The
average transient response time deduced from Fig. 3 can be
given for each of the synchronized states as(a) 14 ns, (b)
71 ns, and(c) 182 ns, where the average period of the cha-
otic oscillations is 1.45 ns. These average transient response
times for complete synchronization are much longer than the
average period of the chaotic oscillations.

We calculate the average transient response time when the
reflectivity of the external mirrorr3 is continuously changed,
as shown in Fig. 4(a). The average transient response time is
increased asr3 is increased. Figure 4(b) shows the bifurca-
tion diagram of the temporal wave forms of the master laser
as a function ofr3, corresponding to Fig. 4(a). The bifurca-
tion diagram is obtained by sampling peak values of tempo-
ral wave forms after transient process at variousr3. At weak
reflectivity of r3 less than 0.004 75, quasiperiodic oscillations
are observed and the average transient response time has a
small value less than 5 ns. In this condition, the transient
response time is not dependent upon initial conditions. As
the temporal wave forms are changed to be more chaotic
with increase ofr3, the average transient response time in-
creases. Therefore, the characteristics of temporal wave
forms are important in determining the average transient re-
sponse time.

To investigate the dependence of the characteristics of
chaotic wave forms upon the transient response time, we
calculate the maximum Lyapunov exponent of chaotic tem-
poral wave forms of the master laser at variousr3. We evalu-
ate the variational equations for the master laser derived
from Eqs.(2.1)–(2.4) along the trajectory in the phase space
[25–28]. The variational equations are obtained from the lin-
earization of Eqs.(2.1)–(2.4) and are described as follows:

TABLE I. Parameter values for semiconductor lasers used in our calculations.

Symbol Parameter Value

GN Gain coefficient 8.4310−13 m3s−1

N0 Carrier density at transparency 1.431024 m−3

Nth Carrier density at threshold 2.01831024 m−3

tp Photon lifetime 1.927 ps

tin Round-trip time in laser cavity 8.0 ps

ts Carrier lifetime 2.04 ns

tm Round-trip time in the external cavity 3.33 ns

tinj Transmission time of injection signal 3.33 ns

a Linewidth enhancement factor 3.0

J Injection current density 1.1Jth

Jth Threshold of injection current density 9.8931032 m−3 s−1

lm Wavelength of master laser 1537 nm

Dv Detuning angular frequency 0

r2 Facet reflectivity 0.556

r3 Reflectivity of external mirror Variable

km Feedback coefficient Variable

kinj Injection coefficient Variable

FIG. 2. Typical example of chaotic temporal wave forms and the
definition of the transient response time of chaos synchronization.
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destd
dt

=
1

2
HGNfNmstd − N0g −

1

tp
Jestd

−
km

tin
Emst − tmdsinfDmstdgdstd +

1

2
GNEmstdnstd

+
km

tin
cosfDmstdgest − tmd. s3.1d

ddstd
dt

=
km

tin

Emst − tmd
uEmstdu2

sinfDmstdgestd

−
km

tin

Emst − tmd
Emstd

cosfDmstdgdstd+
a

2
GNnstd

−
km

tin

1

Emstd
sinfDmstdgest − tmd. s3.2d

FIG. 3. Statistical distributions of the transient response time[(a),(b),(c)] and examples of temporal wave forms of the two lasers
including transient process[(d),(e),(f)] at three values of the reflectivity of the external mirrorr3 for complete synchronization.(a),(d) r3

=0.0050,(b),(e) r3=0.0055, and(c),(f) r3=0.0060. All of the temporal wave forms in(d), (e), and(f) exhibit chaotic dynamics. Note that the

scales of the horizontal axes in(a), (b), and(c) are different.
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dnstd
dt

= − 2GNEmstdfNmstd − N0gestd

− SGNuEmstdu2 +
1

ts
Dnstd. s3.3d

Where,estd, dstd, andnstd are the linearized variables of
Emstd, Dmstd, andNmstd. These three linearized variables are
calculated along the trajectory of[Emstd, Dmstd, Nmstd] ob-
tained from Eqs.(2.1)–(2.4) in the phase space. The norm of
the linearized variablesDstd is defined as

Dstd = Îuestdu2 + udstdu2 + unstdu2. s3.4d

After a short evolution of the trajectorytev, the variation of
the normsd is calculated as

di =
Dst + tevd

Dstd
. s3.5d

Wheredi is the ratio of the norms after the short evolution
tev at theith procedure of the above calculation. Next, all the
variations ofestd, dstd, andnstd are rescaled byDst+tevd and
integration of the trajectory resumes for the next evolution of
tev. After this procedure is repeatedN times, the maximum
Lyapunov exponent is calculated as

l =
1

Ntev
o

i

N

lnsdid. s3.6d

The maximum Lyapunov exponent can be obtained as the
average ratio of norm change in the logarithmic scale. In this
procedure, we essentially calculate the Jacobian matrix of the
original equations along the trajectory of the attractor and
evaluate the growth of perturbation from the original trajec-
tory. Therefore, the estimation of the maximum Lyapunov
exponent by using variational equations is very reliable com-
pared with the estimation based on time series analysis.

Figure 5(a) shows the average transient response time(in
the logarithmic scale) and the maximum Lyapunov exponent

FIG. 4. (a) Average transient response time as a function ofr3

for complete synchronization.(b) Bifurcation diagram of temporal
waveform of the master laser as a function ofr3.

FIG. 5. (a) Average transient response time in the logarithmic
scale (solid curve) and the maximum Lyapunov exponent of the
master-laser output(dotted curve) as a function ofr3 for complete
synchronization.(b) Relationship between the maximum Lyapunov
exponent and the average transient response time in the semi-
logarithmic plot.
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of the master-laser output as a function ofr3. The shape of
the two curves correlates with each other as shown in Fig.
5(a). Figure 5(b) shows the relationship between the maxi-
mum Lyapunov exponent and the average transient response
time. This figure clearly shows that there is a linear correla-
tion between the maximum Lyapunov exponent and the av-
erage transient response time in the semilogarithmic plot.
Therefore, the transient response time is strongly dependent
upon the characteristics of chaos for complete synchroniza-
tion. Longer transient response times are required for more
complicated chaotic wave forms(i.e., larger maximum
Lyapunov exponent) for complete synchronization.

B. Complete synchronization with external feedback

In this section, we change the configuration of our model
in Fig. 1. We set an external mirror in front of the slave laser
to introduce self-feedback light and investigate the transient
response time as a function ofr3. The rate equations for the
slave laser shown in Eqs.(2.5)–(2.8) are modified as follows:

Slave laser:

dEsstd
dt

=
1

2
HGNfNsstd − N0g −

1

tp
JEsstd+

kinj

tin
Emst − tinjd

3cosfDsstdg+
ks

tin
Esst − tsldcosfDs,extstdg. s3.7d

dFsstd
dt

=
a

2
GNfNsstd − Nthg −

kinjEmst − tinjd
tinEsstd

sinfDsstdg

−
ksEsst − tsld

tinEsstd
sinfDs,extstdg. s3.8d

dNsstd
dt

= J −
Nsstd

ts
− GNfNsstd − N0guEsstdu2. s3.9d

Dsstd = − Dvt + vmtinj + Fsstd − Fmst − tinjd. s3.10d

Ds,extstd = vstsl + Fsstd − Fsst − tsld. s3.11d

Whereks is the feedback coefficient of the slave laser,tsl
is the round-trip time of the external cavity in the slave laser.
To maintain the complete synchronization, the feedback co-
efficient of the master laserkm is set to be equal to the sum
of the injection coefficient into the slave laserkinj and the
feedback coefficient of the slave laserks, i.e., km=kinj +ks.
We setkinj =0.8 km and ks=0.2km to satisfy this condition.
The delay times of the external feedback for the master and
slave lasers and the transmission time of the injection signal
are set to be identicalstm=tsl=tinjd. We calculate the tran-
sient response time by integrating Eqs.(2.1)–(2.4) for the
master laser and Eqs.(3.7)–(3.11) for the slave laser.

Figure 6 shows the distributions of the transient response
time at variousr3. Comparing with Figs. 3(a), 3(b) and 3(c),
the average transient response times of the distributions are
enlarged due to the self-feedback in the slave laser. A large
transient is required to suppress its own chaotic dynamics in
the slave laser. Figure 7(a) shows the average transient re-

sponse time and the maximum Lyapunov exponent of the
master-laser output as a function ofr3. It is worth noting that
the average transient response times are larger than those in
Fig. 5(a). This result shows the transient response time in-
creases in the presence of the self-feedback light from the
external mirror in the slave laser for complete synchroniza-
tion. We also investigate the relationship between the aver-
age transient response time and the maximum Lyapunov ex-
ponent as shown in Fig. 7(b). It is found that the average
transient response time and the maximum Lyapunov expo-

FIG. 6. Statistical distributions of the transient response time at
three values of the reflectivity of the external mirrorr3 for complete
synchronization of the slave laser with self-feedback light.(a) r3

=0.0050,(b) r3=0.0055, and(c) r3=0.0060. Note that the scales of
the horizontal axes in(a),(b),(c) are different.
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nent of chaotic wave forms are linearly correlated in the
semi-logarithmic plot, as well in the case of Fig. 5(b). How-
ever, the slope of the line of best fit in Fig. 7(b) is larger than
that in Fig. 5(b), due to the presence of self-feedback light in
the slave laser.

C. Strong injection locking-type synchronization

When the injection coefficientkinj is increased, a different
type of chaos synchronization can be observed, which is re-
ferred to as strong injection locking-type synchronization
[10–16]. In this case, the chaotic oscillations are simply am-
plified in the slave laser by using the injection locking effect,
where the frequency of optical carrier can be matched be-
tween two coupled lasers[29]. We investigate the transient
response time of the injection locking-type synchronization.
We set the coupling coefficient askinj =100km to achieve
injection locking-type synchronization. We remove the exter-
nal mirror in the slave laser in this configuration(ks=0), i.e.,
we integrate Eqs.(2.1)–(2.8) to calculate the transient re-
sponse time for strong injection locking-type synchroniza-
tion.

Figure 8 shows the distributions of the transient response
time for the injection locking-type synchronization at three

different values ofr3. It is significant that all the distributions
have a similar shape, and the average transient response time
(0.21 ns) is much shorter than that for the complete synchro-
nization. Figure 9(a) shows the average transient response
time and the maximum Lyapunov exponent of the master-
laser output as a function ofr3. The average transient re-
sponse time is within one period of the chaotic temporal
wave formss1.45 nsd for all r3. The transient process of syn-
chronization is very fast because chaotic oscillations are am-
plified in the slave laser due to the strong injection from the
master laser, regardless of the characteristics of chaotic tem-
poral wave forms. Figure 9(b) shows the relationship be-

FIG. 7. (a) Average transient response time in the logarithmic
scale (solid curve) and the maximum Lyapunov exponent of the
master-laser output(dotted curve) as a function ofr3 for complete
synchronization of the slave laser with self-feedback light.(b) Re-
lationship between the maximum Lyapunov exponent and the aver-
age transient response time in the semilogarithmic plot.

FIG. 8. Statistical distributions of the transient response time at
three values of the reflectivity of the external mirrorr3 for strong
injection locking-type synchronization.(a) r3=0.0050, (b) r3

=0.0055, and(c) r3=0.0060.
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tween the average transient response time and the maximum
Lyapunov exponent. The average transient response time is
almost constant as the maximum Lyapunov exponent is
changed. We found that the transient response time is not
dependent upon the characteristics of chaotic wave forms for
strong injection locking-type synchronization.

It turns out that the transient characteristics of the two
types of chaos synchronization are totally different. The mea-
surement of the transient response time is a new method to
distinguish the two types of chaos synchronization in a semi-
conductor laser subject to optical feedback, instead of the
measurement of a time lag between the two chaotic wave
forms[12]. From the applications point of view, the injection
locking-type synchronization is preferable for communica-
tions using laser chaos because it can avoid the long transient
process of synchronization for chaos shift keying and chaotic
on-off keying methods.

IV. CONCLUSION

We have investigated the transient characteristics of the
two types of chaos synchronization in a semiconductor laser
subject to optical feedback: complete synchronization and
strong injection locking-type synchronization. We have cal-
culated the statistical distribution of the transient response
time when the initial position in the starting attractor is var-
ied. For complete synchronization, the distribution of the
transient response time has a much larger average and vari-
ance than the average period of the chaotic oscillations. The
average transient response time becomes large as the maxi-
mum Lyapunov exponent of the injected chaotic wave form
is increased. When the slave laser has an external mirror, the
transient response time is larger than that without external
mirror. Conversely, short transient response time is obtained
for strong injection locking-type synchronization. We found
that the transient response time is dependent upon the maxi-
mum Lyapunov exponent of the chaotic temporal wave form
for complete synchronization, whereas it is almost constant
for strong injection locking-type synchronization.
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